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Final Examination

(i) Answer all questions. (ii) Br(z0) = {z ∈ C : |z − z0| < r}. (iii) H= upper half plane. (iv)
Cr(z0) = {z ∈ C : |z − z0| = r}. (v) A1,2(0) = {z ∈ C : 1 < |z| < 2}.

1. Let f ∈ Hol(D) and assume that |f(z)| ≤ 1 for all z ∈ D. If f(0) = 0, then prove that the
series

∞∑
n=0

f(zn)

converges absolutely and uniformly on {z ∈ C : |z| ≤ r}, r < 1.

Answer: Using Schwarz’s lemma we have

|f(z)| ≤ |z|,

for all z ∈ D. Therefore
|f(zn)| ≤ |zn| = |z|n,

for all z ∈ D and n ≥ 0. Now on {z ∈ C ≤ r}, r < 1

∞∑
n=0

|f(zn)| ≤
∞∑
n=0

|z|n ≤
∞∑
n=0

rn.

Since r < 1 the series
∑∞
n=0 r

n converges. Hence the series

∞∑
n=0

f(zn)

converges absolutely and converges uniformly as we have a uniform bound i.e. |f(zn)| ≤ rn

for all z ∈ D.

2. Let γ be a smooth closed curve in C. Prove that the winding number of γ is identically
zero on the unbounded component of C \ {γ}.

Answer. Let W (γ, z) be the winding number of a closed curve γ around a point z /∈ γ and
defined as

W (γ, z) =
1

2πi

∫
γ

dζ

ζ − z
.

Now we know that W (γ, z) is constant on each component of C \ {γ}. Since {γ} is compact,
so we can find z on the unbounded component such that

|ζ − z| > M

for all ζ ∈ γ and for any given arbitrary large M . Therefore

|W (γ, z)| ≤ 1

2π
|
∫
γ

|dζ|
|ζ − z|

≤ L(γ)

2πM
,

where L(γ) is the length of γ. Hence W (γ, z) → 0 as M → ∞. But W (γ, z) is constant on
the unbounded component of C \ {γ}. Therefore W (γ, z) must be zero on the unbounded
component of C \ {γ}.
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3. Prove that there is no branch of the logarithm on C \ {0}.

Answer: Let G = C \ {0} and G
′

= C \ (−∞, 0]. We will prove this by contradiction. Suppose
if possible f(z) is a branch of logz on G. Denote Logz be the principal branch of logz on G

′
.

Then
Log(z) = log|z|+ iarg(z),

where −π < arg(z) < π. Now f |G′ is a branch of logz. Therefore it differs from the principle

branch of logz by 2ikπ for some k ∈ Z, i.e., for z ∈ G′,

f(z) = log|z|+ iarg(z) + 2ikπ,

where −π < arg(z) < π and k is some integer. Now f is holomorphic on G in particular, f
is continuous at −1. Therefore

lim
Im(z)>0,z→−1

f(z) = −iπ + 2ikπ

and
lim

Im(z)<0,z→1
f(z) = iπ + 2ikπ.

Continuity of f at −1 implies that 1 = −1 which is a contradiction. Hence there is no
branch of the logarithm on C \ {0}.

4. If α4 + α3 + 1 = 0 for α ∈ C, then prove that |α| < 3
2 .

Answer: Consider f(z) = z4 + z3 and g(z) = 1 for z ∈ C. Again for |z| = 3
2 ,

|f(z)| = |z3(z + 1)| = |z|3|z + 1| ≤ |z|3||z| − 1| =
(

3

2

)3

(
1

2
) =

27

16
> 1 = |g(z)|.

We have f, g are holomorphic functions on C and |f(z)| > |g(z)| for all z ∈ C 3
2
(0). Now f has

roots at z = 0 and z = −1. Hence by Rouche’s theorem f and f + g have the same number
of zeros inside the circle C 3

2
(0). Therefore if α is a root of f + g = z4 + z3 + 1, then |α| < 3

2 .

5. Let f be a meromorphic function on C and let

|f(z)| ≤
(
|z|
|z − 1|

) 3
2

.

Prove that f = 0.

Answer: From the inequality we have f(0) = 0 and z = 1 is the only possible pole of f . Set
g(z) = (f(z))2 for z ∈ C. Then g is meromorphic function on C and g(0) = 0. Now rewriting
the given inequality we have

|(z − 1)3g(z)| ≤ |z|3

for all z ∈ C. Define h(z) = (z − 1)3g(z). Then h is analytic on C and

|h(z)| ≤ |z|3.

Therefore h is a polynomial of degree 3 and this implies that g is constant. Hence f is
constant. As f(0) = 0, therefore f is identically zero.

6. Let {fn} be a sequence in C(D̄)∩Hol(D). suppose that fn converges uniformly on ∂D to a
function f . Prove that f can be extended to a function in C(D̄) ∩Hol(D).
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Answer. First of all C(D̄) is a complete metric space. Since D̄ is compact, sup |fn − fm| is
attained in the boundary ∂D of D. Consider

αn,m = sup
D̄
|fn − fm|

and
βn,m = sup

∂D
|fn − fm|.

As supD̄ |fn − fm| = sup∂D |fn − fm|, so

αn,m = βn,m.

Now it is given that fn → f uniformly on ∂D. Therefore βn,m → 0 and hence αn,m → 0 as
m,n→∞. So {fn} is cauchy on D̄. But C(D̄) is a complete metric space so {fn} has a limit
say g and fn → g uniformly on D̄. Therefore g is holomorphic on D and continuous on ∂D.
Hence f = g|∂D i.e., g is the extension of f to D̄ such that g is holomorphic on D.

7. Examine the nature of the singularities of the following functions and determine the

residues as the singularities (a) 1
sin 1

z

(b) e
−z

z2 . Use part (b) to find∫
|z|=3

e−z

z2
dz.

Answer. Let f(z) = sin 1
z . Then f has zeros at all z = 1

nπ . They are all zeros of order 1 for

n 6= 0. Therefore 1
f has simple poles at z = 1

nπ for n ∈ Z \ {0}. Let h(z) = e−z

z2 . Then h has
pole of order 2 at z = 0. It is easy to see that

Res(
1

f
,

1

nπ
) =

(−1)n+1

n2π2

and
Res(h, 0) = −1.

Again ∫
|z|=3

e−z

z2
dz = 2πi ×Res(h, 0) = −2πi.

8. Let f ∈ Hol(D) and assume that |f(z)| < 1 for all z ∈ D. Prove that∣∣∣∣ f(z)− f(w)

1− f(z) ¯f(w)

∣∣∣∣ ≤ ∣∣∣∣ z − w1− zw̄

∣∣∣∣ .
Answer: Consider for w ∈ D

φw(z) =
z − w
1− zw̄

, z ∈ D.

Define h : D→ D as
h(φw(z)) = φf(w)(f(z)) (z ∈ D).

Then h is holomorphic on D. Also h(0) = h(φw(w)) = φf(w)(f(w)) = 0 and |h(φw(z))| ≤ 1 as
|φw(z)| < 1 for z ∈ D. Therefore by applying Schwarz’s lemma we have

|h(φw(z))| ≤ |φw(z)|

for all w, z ∈ C. This proves the required inequality.
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