(i) Answer all questions. (ii) $B_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$. (iii) $\mathbb{H}=$ upper half plane. (iv) $C_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. (v) $\mathbb{A}_{1,2}(0)=\{z \in \mathbb{C}: 1<|z|<2\}$.

1. Let $f \in \operatorname{Hol}(\mathbb{D})$ and assume that $|f(z)| \leq 1$ for all $z \in \mathbb{D}$. If $f(0)=0$, then prove that the series

$$
\sum_{n=0}^{\infty} f\left(z^{n}\right)
$$

converges absolutely and uniformly on $\{z \in \mathbb{C}:|z| \leq r\}, r<1$.
Answer: Using Schwarz's lemma we have

$$
|f(z)| \leq|z|
$$

for all $z \in \mathbb{D}$. Therefore

$$
\left|f\left(z^{n}\right)\right| \leq\left|z^{n}\right|=|z|^{n}
$$

for all $z \in \mathbb{D}$ and $n \geq 0$. Now on $\{z \in \mathbb{C} \leq r\}, r<1$

$$
\sum_{n=0}^{\infty}\left|f\left(z^{n}\right)\right| \leq \sum_{n=0}^{\infty}|z|^{n} \leq \sum_{n=0}^{\infty} r^{n}
$$

Since $r<1$ the series $\sum_{n=0}^{\infty} r^{n}$ converges. Hence the series

$$
\sum_{n=0}^{\infty} f\left(z^{n}\right)
$$

converges absolutely and converges uniformly as we have a uniform bound i.e. $\left|f\left(z^{n}\right)\right| \leq r^{n}$ for all $z \in \mathbb{D}$.
2. Let γ be a smooth closed curve in \mathbb{C}. Prove that the winding number of γ is identically zero on the unbounded component of $\mathbb{C} \backslash\{\gamma\}$.

Answer. Let $W(\gamma, z)$ be the winding number of a closed curve γ around a point $z \notin \gamma$ and defined as

$$
W(\gamma, z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z}
$$

Now we know that $W(\gamma, z)$ is constant on each component of $\mathbb{C} \backslash\{\gamma\}$. Since $\{\gamma\}$ is compact, so we can find z on the unbounded component such that

$$
|\zeta-z|>M
$$

for all $\zeta \in \gamma$ and for any given arbitrary large M. Therefore

$$
|W(\gamma, z)| \leq \frac{1}{2 \pi} \left\lvert\, \int_{\gamma} \frac{|d \zeta|}{|\zeta-z|} \leq \frac{L(\gamma)}{2 \pi M}\right.
$$

where $L(\gamma)$ is the length of γ. Hence $W(\gamma, z) \rightarrow 0$ as $M \rightarrow \infty$. But $W(\gamma, z)$ is constant on the unbounded component of $\mathbb{C} \backslash\{\gamma\}$. Therefore $W(\gamma, z)$ must be zero on the unbounded component of $\mathbb{C} \backslash\{\gamma\}$.
3. Prove that there is no branch of the logarithm on $\mathbb{C} \backslash\{0\}$.

Answer: Let $G=\mathbb{C} \backslash\{0\}$ and $G^{\prime}=\mathbb{C} \backslash(-\infty, 0]$. We will prove this by contradiction. Suppose if possible $f(z)$ is a branch of logz on G. Denote Logz be the principal branch of $\log z$ on G^{\prime}. Then

$$
\log (z)=\log |z|+\operatorname{iarg}(z)
$$

where $-\pi<\arg (z)<\pi$. Now $\left.f\right|_{G^{\prime}}$ is a branch of logz. Therefore it differs from the principle branch of $\log z$ by $2 i k \pi$ for some $k \in \mathbb{Z}$, i.e., for $z \in G^{\prime}$,

$$
f(z)=\log |z|+\operatorname{iarg}(z)+2 i k \pi
$$

where $-\pi<\arg (z)<\pi$ and k is some integer. Now f is holomorphic on G in particular, f is continuous at -1 . Therefore

$$
\lim _{\operatorname{Im}(z)>0, z \rightarrow-1} f(z)=-i \pi+2 i k \pi
$$

and

$$
\lim _{\operatorname{Im}(z)<0, z \rightarrow 1} f(z)=i \pi+2 i k \pi
$$

Continuity of f at -1 implies that $1=-1$ which is a contradiction. Hence there is no branch of the logarithm on $\mathbb{C} \backslash\{0\}$.
4. If $\alpha^{4}+\alpha^{3}+1=0$ for $\alpha \in \mathbb{C}$, then prove that $|\alpha|<\frac{3}{2}$.

Answer: Consider $f(z)=z^{4}+z^{3}$ and $g(z)=1$ for $z \in \mathbb{C}$. Again for $|z|=\frac{3}{2}$,

$$
|f(z)|=\left|z^{3}(z+1)\right|=|z|^{3}|z+1| \leq|z|^{3}| | z|-1|=\left(\frac{3}{2}\right)^{3}\left(\frac{1}{2}\right)=\frac{27}{16}>1=|g(z)|
$$

We have f, g are holomorphic functions on \mathbb{C} and $|f(z)|>|g(z)|$ for all $z \in C_{\frac{3}{2}}(0)$. Now f has roots at $z=0$ and $z=-1$. Hence by Rouche's theorem f and $f+g$ have the same number of zeros inside the circle $C_{\frac{3}{2}}(0)$. Therefore if α is a root of $f+g=z^{4}+z^{3}+1$, then $|\alpha|<\frac{3}{2}$.
5. Let f be a meromorphic function on \mathbb{C} and let

$$
|f(z)| \leq\left(\frac{|z|}{|z-1|}\right)^{\frac{3}{2}}
$$

Prove that $f=0$.
Answer: From the inequality we have $f(0)=0$ and $z=1$ is the only possible pole of f. Set $g(z)=(f(z))^{2}$ for $z \in \mathbb{C}$. Then g is meromorphic function on \mathbb{C} and $g(0)=0$. Now rewriting the given inequality we have

$$
\left|(z-1)^{3} g(z)\right| \leq|z|^{3}
$$

for all $z \in \mathbb{C}$. Define $h(z)=(z-1)^{3} g(z)$. Then h is analytic on \mathbb{C} and

$$
|h(z)| \leq|z|^{3} .
$$

Therefore h is a polynomial of degree 3 and this implies that g is constant. Hence f is constant. As $f(0)=0$, therefore f is identically zero.
6. Let $\left\{f_{n}\right\}$ be a sequence in $C(\overline{\mathbb{D}}) \cap H o l(\mathbb{D})$. suppose that f_{n} converges uniformly on $\partial \mathbb{D}$ to a function f. Prove that f can be extended to a function in $C(\overline{\mathbb{D}}) \cap \operatorname{Hol}(\mathbb{D})$.

Answer. First of all $C(\overline{\mathbb{D}})$ is a complete metric space. Since $\overline{\mathbb{D}}$ is compact, sup $\left|f_{n}-f_{m}\right|$ is attained in the boundary $\partial \mathbb{D}$ of \mathbb{D}. Consider

$$
\alpha_{n, m}=\sup _{\overline{\mathbb{D}}}\left|f_{n}-f_{m}\right|
$$

and

$$
\beta_{n, m}=\sup _{\partial \mathbb{D}}\left|f_{n}-f_{m}\right| .
$$

$\boldsymbol{A} \boldsymbol{s} \sup _{\overline{\mathbb{D}}}\left|f_{n}-f_{m}\right|=\sup _{\partial \mathbb{D}}\left|f_{n}-f_{m}\right|$, so

$$
\alpha_{n, m}=\beta_{n, m} .
$$

Now it is given that $f_{n} \rightarrow f$ uniformly on $\partial \mathbb{D}$. Therefore $\beta_{n, m} \rightarrow 0$ and hence $\alpha_{n, m} \rightarrow 0$ as $m, n \rightarrow \infty$. So $\left\{f_{n}\right\}$ is cauchy on $\overline{\mathbb{D}}$. But $C(\overline{\mathbb{D}})$ is a complete metric space so $\left\{f_{n}\right\}$ has a limit say g and $f_{n} \rightarrow g$ uniformly on $\overline{\mathbb{D}}$. Therefore g is holomorphic on \mathbb{D} and continuous on $\partial \mathbb{D}$. Hence $f=\left.g\right|_{\partial \mathbb{D}}$ i.e., g is the extension of f to $\overline{\mathbb{D}}$ such that g is holomorphic on \mathbb{D}.
7. Examine the nature of the singularities of the following functions and determine the residues as the singularities $(a) \frac{1}{\sin \frac{1}{z}}(b) \frac{e^{-z}}{z^{2}}$. Use part (b) to find

$$
\int_{|z|=3} \frac{e^{-z}}{z^{2}} d z
$$

Answer. Let $f(z)=\sin \frac{1}{z}$. Then f has zeros at all $z=\frac{1}{n \pi}$. They are all zeros of order 1 for $n \neq 0$. Therefore $\frac{1}{f}$ has simple poles at $z=\frac{1}{n \pi}$ for $n \in \mathbb{Z} \backslash\{0\}$. Let $h(z)=\frac{e^{-z}}{z^{2}}$. Then h has pole of order 2 at $z=0$. It is easy to see that

$$
\operatorname{Res}\left(\frac{1}{f}, \frac{1}{n \pi}\right)=\frac{(-1)^{n+1}}{n^{2} \pi^{2}}
$$

and

$$
\operatorname{Res}(h, 0)=-1
$$

Again

$$
\int_{|z|=3} \frac{e^{-z}}{z^{2}} d z=2 \pi i \times \operatorname{Res}(h, 0)=-2 \pi i .
$$

8. Let $f \in \operatorname{Hol}(\mathbb{D})$ and assume that $|f(z)|<1$ for all $z \in \mathbb{D}$. Prove that

$$
\left|\frac{f(z)-f(w)}{1-f(z) f(\bar{w})}\right| \leq\left|\frac{z-w}{1-z \bar{w}}\right| .
$$

Answer: Consider for $w \in \mathbb{D}$

$$
\phi_{w}(z)=\frac{z-w}{1-z \bar{w}}, \quad z \in \mathbb{D} .
$$

Define $h: \mathbb{D} \rightarrow \mathbb{D}$ as

$$
h\left(\phi_{w}(z)\right)=\phi_{f(w)}(f(z)) \quad(z \in \mathbb{D}) .
$$

Then h is holomorphic on \mathbb{D}. Also $h(0)=h\left(\phi_{w}(w)\right)=\phi_{f(w)}(f(w))=0$ and $\left|h\left(\phi_{w}(z)\right)\right| \leq 1$ as $\left|\phi_{w}(z)\right|<1$ for $z \in \mathbb{D}$. Therefore by applying Schwarz's lemma we have

$$
\left|h\left(\phi_{w}(z)\right)\right| \leq\left|\phi_{w}(z)\right|
$$

for all $w, z \in \mathbb{C}$. This proves the required inequality.

