Final Examination

(i) Answer all questions. (ii) $B_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$. (iii) $\mathbb{H}=$ upper half plane. (iv) $C_r(z_0) = \{z \in \mathbb{C} : |z - z_0| = r\}$. (v) $\mathbb{A}_{1,2}(0) = \{z \in \mathbb{C} : 1 < |z| < 2\}$.

1. Let $f \in Hol(\mathbb{D})$ and assume that $|f(z)| \leq 1$ for all $z \in \mathbb{D}$. If f(0) = 0, then prove that the series

$$\sum_{n=0}^{\infty} f(z^n)$$

converges absolutely and uniformly on $\{z \in \mathbb{C} : |z| \le r\}, r < 1$.

Answer: Using Schwarz's lemma we have

$$|f(z)| \le |z|,$$

for all $z \in \mathbb{D}$. Therefore

$$|f(z^n)| \le |z^n| = |z|^n,$$

for all $z \in \mathbb{D}$ and $n \ge 0$. Now on $\{z \in \mathbb{C} \le r\}, r < 1$

$$\sum_{n=0}^{\infty} |f(z^n)| \le \sum_{n=0}^{\infty} |z|^n \le \sum_{n=0}^{\infty} r^n.$$

Since r < 1 the series $\sum_{n=0}^{\infty} r^n$ converges. Hence the series

$$\sum_{n=0}^{\infty} f(z^n)$$

converges absolutely and converges uniformly as we have a uniform bound i.e. $|f(z^n)| \leq r^n$ for all $z \in \mathbb{D}$.

2. Let γ be a smooth closed curve in \mathbb{C} . Prove that the winding number of γ is identically zero on the unbounded component of $\mathbb{C} \setminus \{\gamma\}$.

Answer. Let $W(\gamma, z)$ be the winding number of a closed curve γ around a point $z \notin \gamma$ and defined as

$$W(\gamma, z) = \frac{1}{2\pi i} \int_{\gamma} \frac{d\zeta}{\zeta - z}.$$

Now we know that $W(\gamma, z)$ is constant on each component of $\mathbb{C} \setminus \{\gamma\}$. Since $\{\gamma\}$ is compact, so we can find z on the unbounded component such that

$$|\zeta - z| > M$$

for all $\zeta \in \gamma$ and for any given arbitrary large M. Therefore

$$|W(\gamma, z)| \le \frac{1}{2\pi} |\int_{\gamma} \frac{|d\zeta|}{|\zeta - z|} \le \frac{L(\gamma)}{2\pi M},$$

where $L(\gamma)$ is the length of γ . Hence $W(\gamma, z) \to 0$ as $M \to \infty$. But $W(\gamma, z)$ is constant on the unbounded component of $\mathbb{C} \setminus \{\gamma\}$. Therefore $W(\gamma, z)$ must be zero on the unbounded component of $\mathbb{C} \setminus \{\gamma\}$.

3. Prove that there is no branch of the logarithm on $\mathbb{C} \setminus \{0\}$.

Answer: Let $G = \mathbb{C} \setminus \{0\}$ and $G' = \mathbb{C} \setminus (-\infty, 0]$. We will prove this by contradiction. Suppose if possible f(z) is a branch of logz on G. Denote Logz be the principal branch of logz on G'. Then

$$Log(z) = log|z| + iarg(z),$$

where $-\pi < \arg(z) < \pi$. Now $f|_{G'}$ is a branch of $\log z$. Therefore it differs from the principle branch of $\log z$ by $2ik\pi$ for some $k \in \mathbb{Z}$, i.e., for $z \in G'$,

$$f(z) = \log|z| + i \arg(z) + 2ik\pi$$

where $-\pi < arg(z) < \pi$ and k is some integer. Now f is holomorphic on G in particular, f is continuous at -1. Therefore

$$\lim_{Im(z)>0, z\to -1} f(z) = -i\pi + 2ik\pi$$

and

$$\lim_{Im(z)<0, z \to 1} f(z) = i\pi + 2ik\pi.$$

Continuity of f at -1 implies that 1 = -1 which is a contradiction. Hence there is no branch of the logarithm on $\mathbb{C} \setminus \{0\}$.

4. If $\alpha^4 + \alpha^3 + 1 = 0$ for $\alpha \in \mathbb{C}$, then prove that $|\alpha| < \frac{3}{2}$.

Answer: Consider $f(z) = z^4 + z^3$ and g(z) = 1 for $z \in \mathbb{C}$. Again for $|z| = \frac{3}{2}$,

$$|f(z)| = |z^{3}(z+1)| = |z|^{3}|z+1| \le |z|^{3}||z|-1| = \left(\frac{3}{2}\right)^{3}\left(\frac{1}{2}\right) = \frac{27}{16} > 1 = |g(z)|.$$

We have f,g are holomorphic functions on \mathbb{C} and |f(z)| > |g(z)| for all $z \in C_{\frac{3}{2}}(0)$. Now f has roots at z = 0 and z = -1. Hence by Rouche's theorem f and f + g have the same number of zeros inside the circle $C_{\frac{3}{2}}(0)$. Therefore if α is a root of $f + g = z^4 + z^3 + 1$, then $|\alpha| < \frac{3}{2}$.

5. Let f be a meromorphic function on \mathbb{C} and let

$$|f(z)| \le \left(\frac{|z|}{|z-1|}\right)^{\frac{3}{2}}.$$

Prove that f = 0.

Answer: From the inequality we have f(0) = 0 and z = 1 is the only possible pole of f. Set $g(z) = (f(z))^2$ for $z \in \mathbb{C}$. Then g is meromorphic function on \mathbb{C} and g(0) = 0. Now rewriting the given inequality we have

$$|(z-1)^3 g(z)| \le |z|^3$$

for all $z \in \mathbb{C}$. Define $h(z) = (z-1)^3 g(z)$. Then h is analytic on \mathbb{C} and

$$|h(z)| \le |z|^3.$$

Therefore h is a polynomial of degree 3 and this implies that g is constant. Hence f is constant. As f(0) = 0, therefore f is identically zero.

6. Let $\{f_n\}$ be a sequence in $C(\overline{\mathbb{D}}) \cap Hol(\mathbb{D})$. suppose that f_n converges uniformly on $\partial \mathbb{D}$ to a function f. Prove that f can be extended to a function in $C(\overline{\mathbb{D}}) \cap Hol(\mathbb{D})$.

Answer. First of all $C(\overline{\mathbb{D}})$ is a complete metric space. Since $\overline{\mathbb{D}}$ is compact, $\sup |f_n - f_m|$ is attained in the boundary $\partial \mathbb{D}$ of \mathbb{D} . Consider

$$\alpha_{n,m} = \sup_{\overline{\mathbb{D}}} |f_n - f_m|$$

and

$$\beta_{n,m} = \sup_{\partial \mathbb{D}} |f_n - f_m|$$

 $As \sup_{\mathbb{D}} |f_n - f_m| = \sup_{\partial \mathbb{D}} |f_n - f_m|, so$

 $\alpha_{n,m} = \beta_{n,m}.$

Now it is given that $f_n \to f$ uniformly on $\partial \mathbb{D}$. Therefore $\beta_{n,m} \to 0$ and hence $\alpha_{n,m} \to 0$ as $m, n \to \infty$. So $\{f_n\}$ is cauchy on $\overline{\mathbb{D}}$. But $C(\overline{\mathbb{D}})$ is a complete metric space so $\{f_n\}$ has a limit say g and $f_n \to g$ uniformly on $\overline{\mathbb{D}}$. Therefore g is holomorphic on \mathbb{D} and continuous on $\partial \mathbb{D}$. Hence $f = g|_{\partial \mathbb{D}}$ i.e., g is the extension of f to $\overline{\mathbb{D}}$ such that g is holomorphic on \mathbb{D} .

7. Examine the nature of the singularities of the following functions and determine the residues as the singularities $(a)\frac{1}{\sin^{\frac{1}{2}}}$ $(b)\frac{e^{-z}}{z^2}$. Use part (b) to find

$$\int_{|z|=3} \frac{e^{-z}}{z^2} dz.$$

Answer. Let $f(z) = \sin \frac{1}{z}$. Then f has zeros at all $z = \frac{1}{n\pi}$. They are all zeros of order 1 for $n \neq 0$. Therefore $\frac{1}{f}$ has simple poles at $z = \frac{1}{n\pi}$ for $n \in \mathbb{Z} \setminus \{0\}$. Let $h(z) = \frac{e^{-z}}{z^2}$. Then h has pole of order 2 at z = 0. It is easy to see that

$$Res(\frac{1}{f}, \frac{1}{n\pi}) = \frac{(-1)^{n+1}}{n^2\pi^2}$$

and

$$Res(h,0) = -1$$

Again

$$\int_{|z|=3} \frac{e^{-z}}{z^2} dz = 2\pi i \ \times \operatorname{Res}(h,0) = -2\pi i.$$

8. Let $f \in Hol(\mathbb{D})$ and assume that |f(z)| < 1 for all $z \in \mathbb{D}$. Prove that

$$\left|\frac{f(z) - f(w)}{1 - f(z)f(\bar{w})}\right| \le \left|\frac{z - w}{1 - z\bar{w}}\right|$$

Answer: Consider for $w \in \mathbb{D}$

$$\phi_w(z) = \frac{z-w}{1-z\bar{w}}, \qquad z\in\mathbb{D}.$$

Define $h : \mathbb{D} \to \mathbb{D}$ as

$$h(\phi_w(z)) = \phi_{f(w)}(f(z)) \quad (z \in \mathbb{D}).$$

Then h is holomorphic on \mathbb{D} . Also $h(0) = h(\phi_w(w)) = \phi_{f(w)}(f(w)) = 0$ and $|h(\phi_w(z))| \le 1$ as $|\phi_w(z)| < 1$ for $z \in \mathbb{D}$. Therefore by applying Schwarz's lemma we have

$$|h(\phi_w(z))| \le |\phi_w(z)|$$

for all $w, z \in \mathbb{C}$. This proves the required inequality.